skip to main content


Search for: All records

Creators/Authors contains: "Rajamani, Rajesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper develops a cost-effective vehicle detection and tracking system based on fusion of a 2-D LIDAR and a monocular camera to protect electric micromobility devices, especially e-scooters, by predicting the real- time danger of a car- scooter collision. The cost and size disadvantages of 3-D LIDAR sensors make them an unsuitable choice for micromobility devices. Therefore, a 2-D RPLIDAR Mapper sensor is used. Although low-cost, this sensor comes with major shortcomings such as the narrow vertical field of view and its low density of data points. Due to these factors, the sensor does not have a robust output in outdoor applications, and the measurements keep jumping and sliding on the vehicle surface. To improve the performance of the LIDAR, a single monocular camera is fused with the LIDAR data not only to detect vehicles, but also to separately detect the front and side of a target vehicle and to find its corner. It is shown that this corner detection method is more accurate than strategies that are only based on the LIDAR data. The corner measurements are used in a high-gain observer to estimate the location, velocity, and orientation of the target vehicle. The developed system is implemented on a Ninebot e-scooter platform, and multiple experiments are performed to evaluate the performance of the algorithm. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available February 1, 2025
  3. Free, publicly-accessible full text available May 31, 2024
  4. null (Ed.)
  5. null (Ed.)
  6. This paper explores the challenges in developing an inexpensive on-bicycle sensing system to track vehicles at a traffic intersection. In particular, opposing traffic with vehicles that can travel straight or turn left are considered. The estimated vehicle trajectories can be used for collision prevention between bicycles and left-turning vehicles. A compact solid-state 2-D low-density Lidar is mounted at the front of a bicycle to obtain distance measurements from vehicles. Vehicle tracking can be achieved by clustering based approaches for assigning measurement points to individual vehicles, introducing a correction term for position measurement refinement, and by exploiting data association and interacting multiple model Kalman filtering approaches for multi-target tracking. The tracking performance of the developed system is evaluated by both simulation and experimental results. Two types of scenarios that involve straight driving and left turning vehicles are considered. Experimental results show that the developed system can successfully track cars in these scenarios accurately in spite of the low measurement density of the sensor. 
    more » « less